skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ostilla-Mónico, Rodolfo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents numerical results for Rayleigh–Bénard convection with suspended particles at Rayleigh numbers $Ra=10^7$ and $10^8$, and unit Prandtl number. Accounting for their finite size makes it possible to investigate in detail the mechanism by which the particles, which are 10% heavier than the fluid, get resuspended after settling, thus maintaining a two-phase circulating flow. It is shown that an essential component of this mechanism is the formation of particle accumulations, or ‘dunes’, on the bottom of the Rayleigh–Bénard cell. Ascending plumes become localised on these dunes. Particles are dragged up the dune slopes, and when they reach the top, are entrained into the rising plumes. Direct resuspension of particles from the cell bottom, if it happens at all, is very rare. For $Ra=10^7$, aspect ratios (width/height) $$\Gamma =1,2,4$$ are considered. It is found that in these and in the other cases simulated, at steady state, a single dune evolves, the largest linear dimension of which is comparable to the cell size. A remarkable consequence is that even at the low volume fraction considered here, 3.27%, the particles are able to structure the flow and to determine the size and position of the largest ascending plumes. Their effect on the Nusselt number, however, remains small. This and other results are explained on the basis of the ratio of the cell-bottom viscous boundary-layer thickness to the particle diameter. 
    more » « less
    Free, publicly-accessible full text available August 10, 2026
  2. Turbulent shear flows are abundant in geophysical and astrophysical systems and in engineering-technology applications. They are often riddled with large-scale secondary flows that drastically modify the characteristics of the primary stream, preventing or enhancing mixing, mass and heat transfer. Using experiments and numerical simulations, we study the possibility of modifying these secondary flows by using superhydrophobic surface treatments that reduce the local shear. We focus on the canonical problem of Taylor–Couette flow, the flow between two coaxial and independently rotating cylinders, which has robust secondary structures called Taylor rolls that persist even at significant levels of turbulence. We generate these structures by rotating only the inner cylinder of the system, and show that an axially spaced superhydrophobic treatment can weaken the rolls through a mismatching surface heterogeneity, as long as the roll size can be fixed. The minimum hydrophobicity of the treatment required for this flow control is rationalized, and its effectiveness beyond the Reynolds numbers studied here is also discussed. 
    more » « less
  3. Since Taylor’s seminal paper, the existence of large-scale quasi-axisymmetric structures has been a matter of interest when studying Taylor–Couette flow. In this article, we probe their formation in the highly turbulent regime by conducting a series of numerical simulations at a fixed Reynolds number Re s = 3.6 × 10 4 while varying the Coriolis parameter to analyse the flow characteristics as the structures arise and dissipate. We show how the Coriolis force induces a one-way coupling between the radial and azimuthal velocity fields inside the boundary layer, but in the bulk, there is a two-way coupling that causes competing effects. We discuss how this complicates the analogy of narrow-gap Taylor–Couette to other convective flows. We then compare these statistics with a similar shear flow without no-slip boundary layers, showing how this double coupling causes very different effects. We finish by reflecting on the possible origins of turbulent Taylor rolls. This article is part of the theme issue ‘Taylor–Couette and related flows on the centennial of Taylor’s seminal Philosophical Transactions paper (part 1)’. 
    more » « less
  4. Taylor–Couette (TC) flow, the flow between two independently rotating and co-axial cylinders, is commonly used as a canonical model for shear flows. Unlike plane Couette flow, pinned secondary flows can be found in TC flow. These are known as Taylor rolls and drastically affect the flow behaviour. We study the possibility of modifying these secondary structures using patterns of stress-free and no-slip boundary conditions on the inner cylinder. For this, we perform direct numerical simulations of narrow-gap TC flow with pure inner-cylinder rotation at four different shear Reynolds numbers up to $$Re_s=3\times 10^4$$ . We find that one-dimensional azimuthal patterns do not have a significant effect on the flow topology, and that the resulting torque is a large fraction ( $$\sim$$ 80 %–90 %) of torque in the fully no-slip case. One-dimensional axial patterns decrease the torque more, and for certain pattern frequency disrupt the rolls by interfering with the existing Reynolds stresses that generate secondary structures. For $$Re\geq 10^4$$ , this disruption leads to a smaller torque than what would be expected from simple boundary layer effects and the resulting effective slip length and slip velocity. We find that two-dimensional checkerboard patterns have similar behaviour to azimuthal patterns and do not affect the flow or the torque substantially, but two-dimensional spiral inhomogeneities can move around the pinned secondary flows as they induce persistent axial velocities. We quantify the roll's movement for various angles and the widths of the spiral pattern, and find a non-monotonic behaviour as a function of pattern angle and pattern frequency. 
    more » « less
  5. At high Reynolds number, the interaction between two vortex tubes leads to intense velocity gradients, which are at the heart of fluid turbulence. This vorticity amplification comes about through two different instability mechanisms of the initial vortex tubes, assumed anti-parallel and with a mirror plane of symmetry. At moderate Reynolds number, the tubes destabilize via a Crow instability, with the nonlinear development leading to strong flattening of the cores into thin sheets. These sheets then break down into filaments which can repeat the process. At higher Reynolds number, the instability proceeds via the elliptical instability, producing vortex tubes that are perpendicular to the original tube directions. In this work, we demonstrate that these same transition between Crow and Elliptical instability occurs at moderate Reynolds number when we vary the initial angle   between two straight vortex tubes. We demonstrate that when the angle between the two tubes is close to  =2, the interaction between tubes leads to the formation of thin vortex sheets. The subsequent breakdown of these sheets involves a twisting of the paired sheets, followed by the appearance of a localized cloud of small scale vortex structures. At smaller values of the angle   between the two tubes, the breakdown mechanism changes to an elliptic cascade-like mechanism. Whereas the interaction of two vortices depends on the initial condition, the rapid formation of fine-scales vortex structures appears to be a robust feature, possibly universal at very high Reynolds numbers. 
    more » « less